今天下午打开邮箱,打开rawos作者给我发的邮件,甚是惊喜。感谢他对我的支持,因为自己阅读过很多os的代码,包括ucos、rtthread、vxWorks、linux等等,所以阅读rawos对于我来说不算特别辛苦的事情。除了某些细节之外,我对整个系统的设计还算得上是比较了解的,所以也打算把这个代码介绍给大家。能在现实的硬件中使用当然最好,如果没有这样的机会,也可以提高个人的认识水平,或者介绍给内部的团队成员,大家一起分析和学习也不失为一个很好的方法。
闲话不多说,话题还是转到我们今天的主题上面,即互斥量。学过操作系统课程的朋友对这个词汇肯定不会很陌生。和信号量相比,互斥保护的资源一般是唯一的。也就是说,资源就一份,你占有了,我就没有办法占有;当然如果你释放了,此时我就有机会占有了。
一切的一切看上去没有什么问题。但是,我们都知道在实时嵌入式系统当中,线程之间的调度是严格按照优先级来进行调度。比方说,优先级为10的任务必须比优先级为11的任务优先得到调度。那么,有同学会问了,那优先级为11的任务什么时候才能得到调度呢,其实这个要求还是蛮苛刻的。要想优先级为11的任务得到调度,此时必须没有优先级10的任务、或者任务pend到资源上了、或者自身delay、或者被人suspend了。否则,优先级为10的任务会这么一直运行下去。那,这和我们的互斥量有什么关系呢?请听我一一讲来。
我们假设现在有两个任务都准备运行,分别人任务A、B,优先级依次是10、11。某一段时间后,优先级为10和优先级为11的任务都在尝试获取某个资源。本来按照优先级的先后顺序,优先级为10的任务应该率先获取资源,这都没问题。但是,假设在尝试获取资源前,优先级为10的任务开了个小差,sleep一会,那么这个时候优先级为11的任务就可以开始运行了。等到优先级为10的任务苏醒过来,想重新获取资源的时候,惊讶地发现资源早就被别人给占了。因为资源目前只有一份,所以它只好把自己pend到等待队列里面,慢慢等待好心人能快点把资源释放出来。一切的一切看上去没有什么问题,但是这却和实时系统设计的初衷是相违背的。前面我们规定高优先级的任务必须优先得到运行的机会,而目前这种情况和我们的设计原则是背道而驰的。
当然这个问题很早就被大家发现了,大家也在尝试不同的方法来解决。目前使用的比较多的就是两种方法,一种是给互斥量设定一个优先级,另外一种就是对优先级进行继承处理。看上去是两种方法,其实目的只有一个,就是让那些占有互斥量的thread提高优先级,赶快运行结束,把资源还给后面真正需要的人。看上去一切解决得都很完美,但是大家有没有考虑过这样一个问题,如果线程连续占有多个互斥量,优先级又该怎么处理?如果pend的任务被修改了优先级该怎么处理?如果这两种方法一起被使用,那又该怎么处理?我想,这就是作者在后期对互斥量代码进行重构的原因吧。当然了,上面讨论的内容已经是比较深的了,大家可以看看早期互斥量是怎么设计的,慢慢来,这样才会对作者的设计意图更加了解一些。
老规矩,我们首先看看互斥量是怎么设计的,
typedef struct RAW_MUTEX
{
RAW_COMMON_BLOCK_OBJECT common_block_obj;
RAW_U8 count;
/*ponit to occupy task*/
RAW_TASK_OBJ *occupy;
/*occupy task original priority*/
RAW_U8 occupy_original_priority;
} RAW_MUTEX;
看上去互斥量的东西多一点,其实也还可以,只要大家明白了互斥量处理逻辑再回头来看看这些东西的时候,认识就会更加深刻。我们看看,数据结构里面都有什么,
(1)通用互斥结构,这在前面信号量的时候已经介绍过一遍;
(2)计数,判断资源是否还在;
(3)当前所属的任务;
(4)该任务原来的优先级。
说好了基本结构,我们看看互斥量的构造、申请、释放、删除函数是怎么设计的,首先当然还是初始化函数,
RAW_U16 raw_mutex_create(RAW_MUTEX *mutex_ptr, RAW_U8 *name_ptr)
{
#if (RAW_MUTEX_FUNCTION_CHECK > 0)
if (mutex_ptr == 0)
return RAW_NULL_OBJECT;
#endif
/*Init the list*/
list_init(&mutex_ptr->common_block_obj.block_list);
mutex_ptr->common_block_obj.block_way = 0;
mutex_ptr->common_block_obj.name = name_ptr;
/*No one occupy mutex yet*/
mutex_ptr->occupy = 0;
/*resource is available at init state*/
mutex_ptr->count = 1;
mutex_ptr->occupy_original_priority = 0;
return RAW_SUCCESS;
}
初始化的函数还是比较简单的,主要做了下面的流程,
(1)初始化互斥结构的公共属性,比如名字、阻塞方式等等;
(2)初始化当前资源数量;
(3)初始化占有资源的线程指针,还有就是线程的优先级。
创建了互斥量之后,我们就要看看互斥量是怎么申请的?代码有点长,同学们可以心理调整一下了,
RAW_U16 raw_mutex_get(RAW_MUTEX *mutex_ptr, RAW_U32 wait_option)
{
RAW_U16 error_status;
RAW_SR_ALLOC();
#if (RAW_MUTEX_FUNCTION_CHECK > 0)
if (mutex_ptr == 0) {
return RAW_NULL_OBJECT;
}
if (raw_int_nesting) {
return RAW_NOT_CALLED_BY_ISR;
}
#endif
RAW_CRITICAL_ENTER();
/* mutex is available */
if (mutex_ptr->count) {
mutex_ptr->occupy = raw_task_active;
mutex_ptr->occupy_original_priority = raw_task_active->priority;
mutex_ptr->count = 0;
RAW_CRITICAL_EXIT();
return RAW_SUCCESS;
}
/*if the same task get the same mutex again, it causes deadlock*/
if (raw_task_active == mutex_ptr->occupy) {
#if (CONFIG_RAW_ASSERT > 0)
RAW_ASSERT(0);
#endif
RAW_CRITICAL_EXIT();
return RAW_MUTEX_DEADLOCK;
}
/*Cann't get mutex, and return immediately if wait_option is RAW_NO_WAIT*/
if (wait_option == RAW_NO_WAIT) {
RAW_CRITICAL_EXIT();
return RAW_NO_PEND_WAIT;
}
/*system is locked so task can not be blocked just return immediately*/
if (raw_sched_lock) {
RAW_CRITICAL_EXIT();
return RAW_SCHED_DISABLE;
}
/*if current task is a higher priority task and block on the mutex
*priority inverse condition happened, priority inherit method is used here*/
if (raw_task_active->priority < mutex_ptr->occupy->priority) {
switch (mutex_ptr->occupy->task_state) {
case RAW_RDY:
/*remove from the ready list*/
remove_ready_list(&raw_ready_queue, mutex_ptr->occupy);
/*raise the occupy task priority*/
mutex_ptr->occupy->priority = raw_task_active->priority;
/*readd to the ready list head*/
add_ready_list_head(&raw_ready_queue, mutex_ptr->occupy);
break;
case RAW_DLY:
case RAW_DLY_SUSPENDED:
case RAW_SUSPENDED:
/*occupy task is not on any list, so just change the priority*/
mutex_ptr->occupy->priority = raw_task_active->priority;
break;
case RAW_PEND: /* Change the position of the task in the wait list */
case RAW_PEND_TIMEOUT:
case RAW_PEND_SUSPENDED:
case RAW_PEND_TIMEOUT_SUSPENDED:
/*occupy task is on the block list so change the priority on the block list*/
mutex_ptr->occupy->priority = raw_task_active->priority;
change_pend_list_priority(mutex_ptr->occupy);
break;
default:
RAW_CRITICAL_EXIT();
return RAW_INVALID_STATE;
}
}
/*Any way block the current task*/
raw_pend_object(&mutex_ptr->common_block_obj, raw_task_active, wait_option);
RAW_CRITICAL_EXIT();
/*find the next highest priority task ready to run*/
raw_sched();
/*So the task is waked up, need know which reason cause wake up.*/
error_status = block_state_post_process(raw_task_active, 0);
return error_status;
}
这段代码其实开头都还好,关键是末尾要结束的时候有一段代码比较费解。我想,这就是我前面说过的优先级反转问题。为了解决这一问题,在rawos版本中采取了优先级继承的方法。我们还是详细看一下逻辑本身是怎么样的,
(1)判断参数合法性;
(2)判断资源是否可取,如果可取,则在记录当前线程和优先级后返回;
(3)如果资源被自己重复申请,返回;
(4)如果线程不愿等待,返回;
(5)如果此时禁止调度,返回;
(6)如果此时优先级大于互斥量占有者的优先级,分情况处理
a)占有者处于ready的状态,那么修改它的优先级,重新加入调度队列;
b)占有者处于sleep的状态,直接修改优先级即可;
c)占有者也被pend到别的资源上面了,那么修改那个资源的pend列表,可能设计到调度顺序问题。
(7)线程把自己pend到互斥量等待队列上面;
(8)线程调用系统调度函数,切换到其他线程运行;
(9)线程再次得到运行的机会,从task获取结果后返回。
基本上上面的介绍算得上是很详细了,那么互斥量的释放基本上是一个逆操作的过程,朋友也可以思考一下应该怎么解决才好,
RAW_U16 raw_mutex_put(RAW_MUTEX *mutex_ptr)
{
LIST *block_list_head;
RAW_SR_ALLOC();
#if (RAW_MUTEX_FUNCTION_CHECK > 0)
if (mutex_ptr == 0) {
return RAW_NULL_OBJECT;
}
#endif
block_list_head = &mutex_ptr->common_block_obj.block_list;
RAW_CRITICAL_ENTER();
/*Must release the mutex by self*/
if (raw_task_active != mutex_ptr->occupy) {
RAW_CRITICAL_EXIT();
return RAW_MUTEX_NOT_RELEASE_BY_OCCYPY;
}
/*if no block task on this list just return*/
if (is_list_empty(block_list_head)) {
mutex_ptr->count = 1;
RAW_CRITICAL_EXIT();
return RAW_SUCCESS;
}
/*if priority was changed, just change it back to original priority*/
if (raw_task_active->priority != mutex_ptr->occupy_original_priority) {
remove_ready_list(&raw_ready_queue, raw_task_active);
raw_task_active->priority = mutex_ptr->occupy_original_priority;
add_ready_list_end(&raw_ready_queue, raw_task_active);
}
/* there must have task blocked on this mutex object*/
mutex_ptr->occupy = list_entry(block_list_head->next, RAW_TASK_OBJ, task_list);
/*the first blocked task became the occupy task*/
mutex_ptr->occupy_original_priority = mutex_ptr->occupy->priority;
/*mutex resource is occupied*/
mutex_ptr->count = 0;
/*Wake up the occupy task, which is the highst priority task on the list*/
raw_wake_object(mutex_ptr->occupy);
RAW_CRITICAL_EXIT();
raw_sched();
return RAW_SUCCESS;
}
和之前的信号量释放相比,互斥量的释放要复杂一切,关键就在于修改优先级的问题。我们来梳理一下,
(1)判断参数合法性;
(2)判断线程是否为互斥量的占有线程,不是则返回;
(3)判断等待队列是否为空,为空的话则返回;
(4)判断占有任务的优先级有没有发生变化,如果有则需要重新修改优先级,重新加入调度队列中;
(5)选择下一个可以调度的线程;
(6)函数返回。
说了这么些,就剩下最后一个删除互斥量了,大家再接再厉,一起去学习。
RAW_U16 raw_mutex_delete(RAW_MUTEX *mutex_ptr)
{
LIST *block_list_head;
RAW_TASK_OBJ *mutex_occupy;
RAW_SR_ALLOC();
#if (RAW_MUTEX_FUNCTION_CHECK > 0)
if (mutex_ptr == 0) {
return RAW_NULL_OBJECT;
}
#endif
block_list_head = &mutex_ptr->common_block_obj.block_list;
RAW_CRITICAL_ENTER();
mutex_occupy = mutex_ptr->occupy;
/*if mutex is occupied and occupy priority is not the original priority*/
if ((mutex_occupy) && (mutex_occupy->priority != mutex_ptr->occupy_original_priority)) {
switch (mutex_occupy->task_state) {
case RAW_RDY:
/*remove from the ready list*/
remove_ready_list(&raw_ready_queue, mutex_ptr->occupy);
/*raise the occupy task priority*/
mutex_occupy->priority = mutex_ptr->occupy_original_priority;
/*readd to the ready list head*/
add_ready_list_end(&raw_ready_queue, mutex_ptr->occupy);
break;
case RAW_DLY:
case RAW_SUSPENDED:
case RAW_DLY_SUSPENDED:
/*occupy task is not on any list, so just change the priority*/
mutex_occupy->priority = mutex_ptr->occupy_original_priority;
break;
case RAW_PEND:
case RAW_PEND_TIMEOUT:
case RAW_PEND_SUSPENDED:
case RAW_PEND_TIMEOUT_SUSPENDED:
/*occupy task is on the block list so change the priority on the block list*/
mutex_occupy->priority = mutex_ptr->occupy_original_priority;
change_pend_list_priority(mutex_occupy);
break;
default:
RAW_CRITICAL_EXIT();
return RAW_STATE_UNKNOWN;
}
}
/*All task blocked on this queue is waken up*/
while (!is_list_empty(block_list_head)) {
delete_pend_obj(list_entry(block_list_head->next, RAW_TASK_OBJ, task_list));
}
RAW_CRITICAL_EXIT();
raw_sched();
return RAW_SUCCESS;
}
互斥量的操作在实际情形下未必是存在的,所以作者在设计的时候添加了一个编译宏。不过删除所做的工作也不难理解,一个是处理好当前占有者的关系,一个是处理好等待队列的关系。我们来细看一下流程,
(1)判断当前参数合法性;
(2)判断占有者的情况,修改任务优先级,这里的情形和上面申请互斥量的处理方式是一样的,不再赘述;
(3)唤醒所有的等待线程,如果线程已经suspend掉了,那么继续suspend;
(4)调度到其他线程,防止有优先级高的任务已经被释放出来了;
(5)函数返回,结束。